US009189296B2

a2 United States Patent

Fahim et al.

US 9,189,296 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CACHING AGENT FOR DEADLOCK
PREVENTION IN A PROCESSOR BY
ALLOWING REQUESTS THAT DO NOT
DEPLETE AVAILABLE COHERENCE
RESOURCES

(71) Applicant: INTEL CORPORATION, Santa Clara,

(52) US.CL
CPC

GO6F 9/524 (2013.01); GO6F 12/0815
(2013.01); GOGF 12/0855 (2013.01)
(58) Field of Classification Search
CPC GOG6F 9/524
See application file for complete search history.

CA (US) (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Bahaa Fahim, San Jose, CA (US);
Jeffrey Chamberlain, Tracy, CA (US); 6,865,634 B2* 3/2005 McAllister 710/240
Yen-Cheng Liu, Portland, OR (US) 7,600,080 B1* 10/2009 Bhattacharyyaetal. 711/143
’ ’ 7,668,979 B1* 2/2010 Wentzlaff 710/33
(73) Assignee: Intel Corporation, Santa Clara, CA * cited by examiner
Us
Us) Primary Examiner — Tammara Peyton
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — International IP Law
patent is extended or adjusted under 35 Group, PL.L.C.
(21) Appl. No.: 14/142,137 Disclosed herein is a caching agent for preventing deadlock in
aprocessor. The caching agent includes a receiver configured
(22) Tiled: Dec. 27, 2013 to receive a request from a core of the processor. The caching
agent includes ingress logic coupled to the receiver to deter-
(65) Prior Publication Data mine that the request is potentially a cacheable request. The
ingress logic is to determine that the request does not deplete
US 2015/0186191 Al Jul. 2, 2015 an available coherence resource. The ingress logic is to allow
51y Int.Cl the request to be processed in response to the determination
Gh Gn 0;5 F 1 500 (2006.01) that the request does not deplete the available coherence
GOGF 9/52 (2006.01) resouree.
GOG6F 12/08 (2006.01) 25 Claims, 5 Drawing Sheets
510 PCle DMI DDR DOR
et gL} L7
Disp BI?G_I |_Dw pcle| MemonCntr T 520
Eng Bridge| conerence Logic T 922
51 2) 518~
| |
- 530A — 540A
Last Level
Core ﬁ] Cache
552A
Last Level CBO - Cache
Core Cache Controller
5304 and LL$ Slices
Last Level
Core Cache
550 552N olova
t Level
Core \ as
- 530N \/ Cache | sa0n
\ Ring Interconnect
(Carries Addr, Data, Ack and
560 ~ Cen GFX (GT) Snoop/Invalid Traffic)

Media Engine

565~

)
(=
o

U.S. Patent

Nov. 17,2015 Sheet 1 of 5
100\
160 N
Power Control
101~ 102~
101a Coe 101p~ | [102ay ©°® 102p~
Arch Reg Arch Reg Arch Reg Arch Reg

120™ BB and I-TLB 121 BB and LB

I I
125 Decode 126 Decode

I I
130 Rename/Allocater 131 Rename/Allocater

| |
Scheduler/Execution Scheduler/Execution
Units(s) 135 Units(s) 136
1407 L 1417 L
Reorder/Retirement Reorder/Retirement
Units Units
Lower LevelD- |—130 Lower Level D- | _—151
Cache and D-TLB Cache and D-TLB
A A
¥ v
110
On-Chip Interface
Device System Memory
180 J J J) J
176 105 177 175

FIG. 1

US 9,189,296 B2

U.S. Patent Nov. 17, 2015 Sheet 2 of 5

~

US 9,189,296 B2

/ 206

A

110

Posted

202 \

MMIO Caching
Agent

Core

200

FIG. 2

US 9,189,296 B2

Sheet 3 of 5

Nov. 17, 2015

U.S. Patent

€ 9Old
00¢
02

T |

1
avs Juaby i
m N—90¢ Buiyoen “

A
| |
1 1
1 1
1 1
1 1
1 1
1 1
| “
! ssalby| !
“ I
1 1
| “
L] supdd | skem s00 2109 | | |
oL | 0LE |
m @ g i
) 80¢ 1114 pul ske 509 Ol m
“ Czie I
1 A 1
i zog - !
A I .]
J03UU0IBI|
v0€ -

U.S. Patent Nov. 17, 2015 Sheet 4 of 5

Receive Request from Processor Core

402

v

Detect that Request is Potentially
Cacheable

- 404

406

Request Deplete Available
Coherence Resource?

Allow Request to Process

410

400

FIG. 4

US 9,189,296 B2

(408

Prevent Request
from
Processing

U.S. Patent Nov. 17, 2015 Sheet 5 of 5 US 9,189,296 B2

510 PCle DM DDR DR
N\ stan 516 4

\ /
Disp E?G_‘ _D"'M pcle | MemonCntir T °%0
Eng Bridge L— 522

Coherence Logic

51 2) 518~
[530A 540A

Core a Last Level

Cache
552A—

Core Last Level CBO - Cache

Cache Controller
530 and LL$ Slices

Core Last Level

Cache
550— — 552N
C /] Last Level
ore L Cache
L N— 530N V 540N
\ Ring Interconnect
Gen GFX (GT (Carries Addr, Data, Ack and
560 ~ : (.) Snoop/Invalid Traffic)
Media Engine
]
565—"
500

FIG. 5

US 9,189,296 B2

1
CACHING AGENT FOR DEADLOCK
PREVENTION IN A PROCESSOR BY
ALLOWING REQUESTS THAT DO NOT
DEPLETE AVAILABLE COHERENCE
RESOURCES

TECHNICAL FIELD

The present disclosure is generally related to processing
memory mapped input/output (MMIO) requests. More spe-
cifically, the present disclosure is related to allocating coher-
ence resources for cacheable MMIO requests while prevent-
ing deadlock in a caching agent.

BACKGROUND

In a processor, caches may be used to hold copies of data
from memory in order to shorten the latency of subsequent
accesses to memory. In some scenarios, caches are shared
across multiple entities in a processor, or processing system,
that includes several integrated components. The caches may
be used to cache data both from memory-mapped input/out-
put devices (MMIO), such as data from stored on a hard disk
or in a basic input output system (BIOS) read only memory
(ROM), as well as from random access memory (RAM).
During caching, a component or logic used to manage the
caching may be referred to herein as a caching agent. In some
scenarios, a caching agent may be subject to potential dead-
lock issues as it arbitrates between caching requests issued
from various integrated components on the processor.

BRIEF DESCRIPTION OF THE FIGURES

The following detailed description may be better under-
stood by referencing the accompanying drawings, which con-
tain specific examples of numerous objects and features of the
disclosed subject matter.

FIG. 1 illustrates an embodiment of a block diagram for a
computing system including a multicore processor.

FIG. 2 is block diagram of a processor, in accordance with
embodiments of the present disclosure.

FIG. 3 is ablock diagram of a caching agent of a processor,
in accordance with embodiments of the present disclosure.

FIG. 41is a process flow diagram of a method for preventing
deadlock in a processor, in accordance with embodiments of
the present disclosure.

FIG. 5 illustrates an embodiment of a processor including
an on-die interconnect.

DETAILED DESCRIPTION

As discussed above, a caching agent may be exposed to a
number of potential deadlock issues. The caching agent may
arbitrate between requests issued from integrated compo-
nents on the processor, which may include multiple cores as
well as integrated input output (I/O) devices capable of per-
forming direct memory accesses (DMA). The resources the
caching agent has at its disposal for tracking these transac-
tions through to their completion are finite, and as a result
caching requests issued by a core or other integrated device
will, in some scenarios, be required to wait until other
requests complete and free up the existing resources for new
caching requests. Further, the caching agent may be required
to adhere to the interconnect protocols of the underlying
fabric(s).

For example, the requirements of the Peripheral Compo-
nent Interconnect Express (PCIE) protocol must be satisfied

10

15

20

25

30

35

40

45

50

55

60

65

2

for any integrated PCle devices that are issuing DMAs to the
memory through the caching agent. Such an interconnect
protocol may dictate that DMAs issued to the memory (which
in the PCle protocol example are referred to as posted
requests) complete prior to any outstanding MMIO requests
issued by the cores into an I/0 domain. If there are no coher-
ence resources available to process the posted requests in the
caching agent, at a time when all the cores’ coherent requests
are accessing MMIO, then deadlock can occur. In other
words, a posted request to DRAM may be a request issued by
an [/O device to memory, and an MMIO request from a core
may be a request issued to an I/O device. An /O device may
be both a receiver of MMIO requests as well as an initiator of
requests to DRAM, and may result in a deadlock situation as
discussed above.

The present disclosure describes a system and method for
preventing situations that may result in deadlock in a proces-
sor. When a caching agent receives a request from a core in the
processor, the caching agent can determine if the request is
potentially a cacheable request. The caching agent can also
determine if the potential cacheable request would deplete or
use up all of the available coherence resources. If the cache-
able request would not deplete the available coherence
resources, then the cacheable request is allowed to process.
Otherwise, the cacheable request is blocked, so that coher-
ence resources are available for a posted request.

In the following description, numerous specific details are
set forth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific proces-
sor pipeline stages and operation etc. in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that these specific
details need not be employed to practice the present inven-
tion. In other instances, well known components or methods,
such as specific and alternative processor architectures, spe-
cific logic circuits/code for described algorithms, specific
firmware code, specific interconnect operation, specific logic
configurations, specific manufacturing techniques and mate-
rials, specific compiler implementations, specific expression
of algorithms in code, specific power down and gating tech-
niques/logic and other specific operational details of com-
puter system haven’t been described in detail in order to avoid
unnecessarily obscuring the present invention.

As computing systems are advancing, the components
therein are becoming more complex. As a result, the intercon-
nect architecture to couple and communicate between the
components is also increasing in complexity to ensure band-
width requirements are met for optimal component operation.
Furthermore, different market segments demand different
aspects of interconnect architectures to suit the market’s
needs. For example, servers require higher performance,
while the mobile ecosystem is sometimes able to sacrifice
overall performance for power savings. Yet, it’s a singular
purpose of most fabrics to provide highest possible perfor-
mance with maximum power saving. Below, a number of
interconnects are discussed, which would potentially benefit
from aspects of the invention described herein.

Referring to FIG. 1, an embodiment of a block diagram for
a computing system including a multicore processor is
depicted. Processor 100 includes any processor or processing
device, such as a microprocessor, an embedded processor, a
digital signal processor (DSP), a network processor, a hand-
held processor, an application processor, a co-processor, a
system on a chip (SOC), or other device to execute code.

US 9,189,296 B2

3

Processor 100, in one embodiment, includes at least two
cores—core 101 and 102, which may include asymmetric
cores or symmetric cores (the illustrated embodiment). How-
ever, processor 100 may include any number of processing
elements that may be symmetric or asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor (or processor socket) typi-
cally refers to an integrated circuit, which potentially includes
any number of other processing elements, such as cores or
hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
an independent architectural state, wherein the independently
maintained architectural states share access to execution
resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 100, as illustrated in FIG. 1, includes
two cores—core 101 and 102. Here, core 101 and 102 are
considered symmetric cores, i.e. cores with the same configu-
rations, functional units, and/or logic. In another embodi-
ment, core 101 includes an out-of-order processor core, while
core 102 includes an in-order processor core. However, cores
101 and 102 may be individually selected from any type of
core, such as a native core, a software managed core, a core
adapted to execute a native Instruction Set Architecture
(ISA), a core adapted to execute a translated Instruction Set
Architecture (ISA), a co-designed core, or other known core.
In a heterogeneous core environment (i.e. asymmetric cores),
some form of translation, such a binary translation, may be
utilized to schedule or execute code on one or both cores. Yet
to further the discussion, the functional units illustrated in
core 101 are described in further detail below, as the units in
core 102 operate in a similar manner in the depicted embodi-
ment.

As depicted, core 101 includes two hardware threads 101a
and 1015, which may also be referred to as hardware thread
slots 101a and 1015. Therefore, software entities, such as an
operating system, in one embodiment potentially view pro-
cessor 100 as four separate processors, i.e., four logical pro-
cessors or processing elements capable of executing four
software threads concurrently. As alluded to above, a first
thread is associated with architecture state registers 101q, a
second thread is associated with architecture state registers
1015, a third thread may be associated with architecture state
registers 102a, and a fourth thread may be associated with
architecture state registers 1025. Here, each of the architec-
ture state registers (101a, 1015, 1024, and 1025) may be
referred to as processing elements, thread slots, or thread
units, as described above. As illustrated, architecture state

30

40

45

55

4

registers 101a are replicated in architecture state registers
10154, so individual architecture states/contexts are capable of
being stored for logical processor 101a and logical processor
1015. In core 101, other smaller resources, such as instruction
pointers and renaming logic in allocator and renamer block
130 may also be replicated for threads 101a and 1015. Some
resources, such as re-order buffers in reorder/retirement unit
135, ILTB 120, load/store butfers, and queues may be shared
through partitioning. Other resources, such as general pur-
pose internal registers, page-table base register(s), low-level
data-cache and data-TLB 115, execution unit(s) 140, and
portions of out-of-order unit 135 are potentially fully shared.

Processor 100 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 1, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as
include any other known functional units, logic, or firmware
not depicted. As illustrated, core 101 includes a simplified,
representative out-of-order (OOQO) processor core. But an
in-order processor may be utilized in different embodiments.
The OOO core includes a branch target buffer 120 to predict
branches to be executed/taken and an instruction-translation
buffer (I-TLB) 120 to store address translation entries for
instructions.

Core 101 further includes decode module 125 coupled to
fetch unit 120 to decode fetched elements. Fetch logic, in one
embodiment, includes individual sequencers associated with
thread slots 101a, 1015, respectively. Usually core 101 is
associated with a first ISA, which defines/specifies instruc-
tions executable on processor 100. Often machine code
instructions that are part of the first ISA include a portion of
the instruction (referred to as an opcode), which references/
specifies an instruction or operation to be performed. Decode
logic 125 includes circuitry that recognizes these instructions
from their opcodes and passes the decoded instructions on in
the pipeline for processing as defined by the first ISA. For
example, as discussed in more detail below decoders 125, in
one embodiment, include logic designed or adapted to recog-
nize specific instructions, such as transactional instruction.
As a result of the recognition by decoders 125, the architec-
ture or core 101 takes specific, predefined actions to perform
tasks associated with the appropriate instruction. It is impor-
tant to note that any of the tasks, blocks, operations, and
methods described herein may be performed in response to a
single or multiple instructions; some of which may be new or
old instructions. Note decoders 126, in one embodiment,
recognize the same [SA (or a subset thereof). Alternatively, in
a heterogeneous core environment, decoders 126 recognize a
second ISA (either a subset of the first ISA or a distinct ISA).

In one example, allocator and renamer block 130 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 101a and
10154 are potentially capable of out-of-order execution, where
allocator and renamer block 130 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 100. Reorder/retirement unit 135
includes components, such as the reorder butfers mentioned
above, load buffers, and store buffers, to support out-of-order
execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 140, in one embodi-
ment, includes a scheduler unit to schedule instructions/op-
eration on execution units. For example, a floating point

US 9,189,296 B2

5

instruction is scheduled on a port of an execution unit that has
an available floating point execution unit. Register files asso-
ciated with the execution units are also included to store
information instruction processing results. Exemplary execu-
tion units include a floating point execution unit, an integer
execution unit, a jump execution unit, a load execution unit, a
store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
150 are coupled to execution unit(s) 140. The data cache is to
store recently used/operated on elements, such as data oper-
ands, which are potentially held in memory coherency states.
The D-TLB isto store recent virtual/linear to physical address
translations. As a specific example, a processor may include a
page table structure to break physical memory into a plurality
of virtual pages.

Here, cores 101 and 102 share access to higher-level or
further-out cache, such as a second level cache associated
with on-chip interface 110. Note that higher-level or further-
out refers to cache levels increasing or getting further way
from the execution unit(s). In one embodiment, higher-level
cache is a last-level data cache—last cache in the memory
hierarchy on processor 100—such as a second or third level
data cache. However, higher level caches are not so limited, as
it may be associated with or include an instruction cache. A
trace cache—a type of instruction cache—instead may be
coupled after decoder 125 to store recently decoded traces.
Here, an instruction potentially refers to a macro-instruction
(i.e. a general instruction recognized by the decoders), which
may decode into a number of micro-instructions (micro-op-
erations).

In the depicted configuration, processor 100 also includes
on-chip interface module 110. Historically, a memory con-
troller, which is described in more detail below, has been
included in a computing system external to processor 100. In
this scenario, on-chip interface 11 is to communicate with
devices external to processor 100, such as system memory
175, a chipset (often including a memory controller hub to
connect to memory 175 and an I/O controller hub to connect
peripheral devices), a memory controller hub, a northbridge,
or other integrated circuit. And in this scenario, bus 105 may
include any known interconnect, such as multi-drop bus, a
point-to-point interconnect, a serial interconnect, a parallel
bus, a coherent (e.g. cache coherent) bus, a layered protocol
architecture, a differential bus, and a GTL bus.

Memory 175 may be dedicated to processor 100 or shared
with other devices in a system. Common examples of types of
memory 175 include DRAM, SRAM, non-volatile memory
(NV memory), and other known storage devices. Note that
device 180 may include a graphic accelerator, processor or
card coupled to a memory controller hub, data storage
coupledto an I/O controller hub, a wireless transceiver, a flash
device, an audio controller, a network controller, or other
known device.

Recently however, as more logic and devices are being
integrated on a single die, such as SOC, each of these devices
may be incorporated on processor 100. For example in one
embodiment, a memory controller hub is on the same package
and/or die with processor 100. Here, a portion of the core (an
on-core portion) 110 includes one or more controller(s) for
interfacing with other devices such as memory 175 or a
graphics device 180. The configuration including an intercon-
nect and controllers for interfacing with such devices is often
referred to as an on-core (or un-core configuration). As an
example, on-chip interface 110 includes a ring interconnect
for on-chip communication and a high-speed serial point-to-
point link 105 for off-chip communication. Yet, in the SOC
environment, even more devices, such as the network inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

face, co-processors, memory 175, graphics processor 180,
and any other known computer devices/interface may be inte-
grated on a single die or integrated circuit to provide small
form factor with high functionality and low power consump-
tion.

In one embodiment, processor 100 is capable of executing
a compiler, optimization, and/or translator code 177 to com-
pile, translate, and/or optimize application code 176 to sup-
port the apparatus and methods described herein or to inter-
face therewith. A compiler often includes a program or set of
programs to translate source text/code into target text/code.
Usually, compilation of program/application code with a
compiler is done in multiple phases and passes to transform
hi-level programming language code into low-level machine
or assembly language code. Yet, single pass compilers may
still be utilized for simple compilation. A compiler may uti-
lize any known compilation techniques and perform any
known compiler operations, such as lexical analysis, prepro-
cessing, parsing, semantic analysis, code generation, code
transformation, and code optimization.

Larger compilers often include multiple phases, but most
often these phases are included within two general phases: (1)
afront-end, i.e. generally where syntactic processing, seman-
tic processing, and some transformation/optimization may
take place, and (2) a back-end, i.e. generally where analysis,
transformations, optimizations, and code generation takes
place. Some compilers refer to a middle, which illustrates the
blurring of delineation between a front-end and back end of a
compiler. As a result, reference to insertion, association, gen-
eration, or other operation of a compiler may take place in any
of the aforementioned phases or passes, as well as any other
known phases or passes of a compiler. As an illustrative
example, a compiler potentially inserts operations, calls,
functions, etc. in one or more phases of compilation, such as
insertion of calls/operations in a front-end phase of compila-
tion and then transformation of the calls/operations into
lower-level code during a transformation phase. Note that
during dynamic compilation, compiler code or dynamic opti-
mization code may insert such operations/calls, as well as
optimize the code for execution during runtime. As a specific
illustrative example, binary code (already compiled code)
may be dynamically optimized during runtime. Here, the
program code may include the dynamic optimization code,
the binary code, or a combination thereof.

Similar to a compiler, a translator, such as a binary trans-
lator, translates code either statically or dynamically to opti-
mize and/or translate code. Therefore, reference to execution
of code, application code, program code, or other software
environment may refer to: (1) execution of a compiler pro-
gram(s), optimization code optimizer, or translator either
dynamically or statically, to compile program code, to main-
tain software structures, to perform other operations, to opti-
mize code, or to translate code; (2) execution of main program
code including operations/calls, such as application code that
has been optimized/compiled; (3) execution of other program
code, such as libraries, associated with the main program
code to maintain software structures, to perform other soft-
ware related operations, or to optimize code; or (4) a combi-
nation thereof.

FIG. 2is ablock diagram ofa processor, in accordance with
embodiments of the present disclosure. The processor 200
includes a core 202 communicatively coupled to a caching
agent 204. The processor 200 may also include an integrated
input/output (I10) controller 206.

The core 202 can initiate a cacheable memory-mapped
input/output request to the caching agent 204. The 11O con-
troller 206 can also post a request to the caching agent 204. In

US 9,189,296 B2

7

some embodiments, interconnect protocol, such as Peripheral
Component Interconnect Express ordering, dictates that
requests from IO be processed ahead of core-initiated
requests.

To process either MMIO request or posted request, the
caching agent acquires coherence resources. Examples of
coherence resources include last level cache (LL.C) ways and
atable of outstanding requests (TOR) available to the caching
agent. The LL.C ways may be the ways of a shared set asso-
ciative cache. It is noted that the embodiments described
herein extend to other shared caches other than the LLC. If the
MMIO request uses up remaining available coherence
resources, the deadlock can occur, as the MMIO request
cannot be completed before the posted request, and the post
request cannot be completed due to lack of coherence
resources.

To prevent deadlock, the caching agent 204 checks the
availability of coherence resources before allowing the
MMIO request to process. If processing the MMIO request
would completely deplete the available coherence resources,
then the MMIO request is blocked from processing until more
coherence resources are available. If processing the MMIO
request would still leave sufficient coherence resources to be
used for posted requests, then the MMIO request is allowed to
process.

FIG. 3 is ablock diagram of a caching agent of a processor,
in accordance with embodiments of the present disclosure.
The caching agent 204 can be a circuit or a chipset embedded
on the processor 200. The caching agent 204 can include an
ingress 302 to function as a gateway for a core-initiated
request. The caching agent 204 can also include a system
address decoder (SAD) 306 and a table of requests (TOR)
pipeline 308.

The ingress 302 is configured to receive a request from a
processor core 202 via an interconnect 304. The interconnect
304 may be an in-die interconnect (IDI). In some embodi-
ments, a plurality of requests is received by the ingress 302
from the core 202. A find first module 310 on the ingress 302
can select the earliest core-initiated request.

The ingress 302 is configured to determine whether or not
the request is potentially a cacheable MMIO request before
the request is processed. In some embodiments, the core 202
can send a cacheable request while in an administrative mode.
For example, the core 202 can send the cacheable request in
system management mode (SMM). System management
mode is an operating mode in which normal operations such
as the operating system are suspended and special applica-
tions are executed in a high-privilege mode. The system
address decoder 306 can detect that the request was sent in
SMM, and determine that the request is potentially a cache-
able request. In some embodiments, the ingress 302 can also
determine that the request is a memory-mapped input/output
(MMIO) request by querying the SAD/TOR pipeline.

The ingress 302 can check for whether or not the MMIO
request would deplete available coherence resources. If pro-
cessing the MMIO request would leave no coherence
resources for posted requests from the 11O controller 206,
then the MMIO request is blocked. The MMIO request is
considered to “deplete” a coherence resource if the act of
processing the MMIO request could inhibit a posted request
from processing using the coherence resource. Coherence
resources may include table of request (TOR) entries and last
level cache (LLC) ways.

In some embodiments, the ingress 302 can access the TOR
pipeline 308 to check the number of TOR entries available. If
the TOR is nearly full, or there is only one TOR entry avail-
able, then the MMIO request is blocked. In some embodi-

5

10

15

20

25

30

35

40

45

50

55

60

8

ments, the LLC ways are allocated into integrated input/
output (110) class of service (CoS) ways 312, and core CoS
ways 314. The allocation ensures that the MMIO request does
not use an LL.C way that is reserved for posted 110 requests.
In some embodiments, the MMIO request is allowed to pro-
cess if both of the following conditions are fulfilled:

a. The MMIO request does not use the last available TOR

entry.

b. The MMIO request does not use an LL.C way reserved

for posted 110 requests.

If the ingress 302 determines that the MMIO request does
not deplete the available coherence resources, then the
MMIO request is allowed to process. The SAD 306 can be
used to map the address space of the MMIO request. The
MMIO request can be processed into the TOR pipeline 308.

FIG. 4 is a process flow diagram of a method for preventing
deadlock in a processor, in accordance with embodiments of
the present disclosure. The method 400 can be performed by
a caching agent 204 of the processor 200, in accordance with
embodiments described in FIGS. 2 and 3. At block 402, the
caching agent receives a request from a core of the processor.

Atblock 404, the caching agent determines that the request
is potentially cacheable. In some embodiments, the caching
agent determines that the request was sent in an administra-
tive mode, such as system management mode (SMM). The
caching agent may determine whether the request is an
MMIO request.

At block 406, the caching agent determines whether or not
the request depletes an available coherence resource. The
caching agent can check if the request would use the last
available table of requests (TOR) entry. The caching agent
can check if the request would use a last level cache (LLC)
way thathas been allocated and reserved for posted integrated
input (110) requests.

Ifthe request does deplete an available coherence resource,
then the method 400 proceeds to block 408, where the cach-
ing agent prevents the request from processing. If the request
does not deplete an available coherence resource, then the
method 400 proceeds to block 410, where the caching agent
allows the request to process.

Referring now to FIG. 5, shown is a block diagram of an
embodiment of a multicore processor. As shown in the
embodiment of FIG. 5, processor 500 includes multiple
domains. Specifically, a core domain 530 includes a plurality
of cores 530A-530N, a graphics domain 560 includes one or
more graphics engines having a media engine 565, a system
agent domain 510 such as a memory agent, and a Peripheral
Component Interconnect Express (PCIE) agent domain 511.

In various embodiments, system agent domain 510, and in
some embodiments PCIE agent domain 511, handles power
control events and power management, such that individual
units of domains 530 and 560 (e.g. cores and/or graphics
engines) are independently controllable to dynamically oper-
ate at an appropriate power mode/level (e.g. active, turbo,
sleep, hibernate, deep sleep, or other Advanced Configuration
Power Interface like state) in light of the activity (or inactiv-
ity) occurring in the given unit. Each of domains 530 and 560
may operate at different voltage and/or power, and further-
more the individual units within the domains each potentially
operate at an independent frequency and voltage. Note that
while only shown with three domains, understand the scope
of the present invention is not limited in this regard and
additional domains may be present in other embodiments.

As shown, each core 530 further includes low level caches
in addition to various execution units and additional process-
ing elements. Here, the various cores are coupled to each
other and to a shared cache memory that is formed of a

US 9,189,296 B2

9

plurality of units or slices of a last level cache (LLC) 540A-
540N; these LL.Cs often include storage and cache controller
functionality and are shared amongst the cores, as well as
potentially among the graphics engine too.

As seen, aring interconnect 550 couples the cores together,
and provides interconnection between the core domain 530,
graphics domain 560 and system agent circuitry 510, via a
plurality of ring stops 552A-552N, each at a coupling
between a core and LLC slice. As seen in FIG. 5, interconnect
550 is used to carry various information, including address
information, data information, acknowledgement informa-
tion, and snoop/invalid information. Although a ring inter-
connect is illustrated, any known on-die interconnect or fabric
may be utilized. As an illustrative example, some of the fab-
rics discussed above (e.g. another on-die interconnect, Intel
On-chip System Fabric (IOSF), an Advanced Microcontroller
Bus Architecture (AMBA) interconnect, a multi-dimensional
mesh fabric, or other known interconnect architecture) may
be utilized in a similar fashion.

As further depicted, system agent domain 510 includes
display engine 512 which is to provide control of and an
interface to an associated display. System agent domain 510
may include other units, such as: an integrated memory con-
troller 520 that provides for an interface to a system memory
(e.g., a DRAM implemented with multiple DIMMs; coher-
ence logic 522 to perform memory coherence operations.
Multiple interfaces may be present to enable interconnection
between the processor and other circuitry. For example, in
one embodiment at least one direct media interface (DMI)
516 interface is provided as well as one or more PCle™
interfaces 514. The display engine and these interfaces typi-
cally couple to memory via a PCle™ bridge 518. Still further,
to provide for communications between other agents, such as
additional processors or other circuitry, one or more other
interfaces (e.g. an Intel® Quick Path Interconnect (QPI) fab-
ric) may be provided.

EXAMPLE 1

A caching agent is described herein. The caching agent
may be used to reduce, or prevent deadlock on a processing
means, such as a processor of a computing device. The cach-
ing agent may include a receiving means to receive a request
from a core of the processor. The caching agent may include
ingress logic, coupled to the receiver. The ingress logic may
determine that the request is potentially a cacheable request,
and determine that the request does not deplete an available
coherence resource. The ingress logic may allow the request
to be processed in response to the determination that the
request does not deplete the available coherence resource.

EXAMPLE 2

A method for reducing deadlock in a processing means,
such as a processor of a computing device is described herein.
The method may include receiving a request from a core of
the processor. The method includes determining that the
request is potentially a cacheable request, and determining
that the request does not deplete an available coherence
resource. The request may be allowed to be processed in
response to the determination that the request does not
deplete the available coherence resource.

EXAMPLE 3

A processing means, such as a processing device, is
described herein. The processing means may include a core,

10

15

20

25

30

35

40

45

50

55

60

65

10

and a caching agent communicatively coupled to the core.
The caching agent includes an ingress port including code,
when executed, to cause the ingress port to receive a request
from a core of the processor, and determine that the request is
potentially a cacheable request. The ingress port may include
code, that when executed by the processor will cause the
ingress port to determine that the request does not deplete an
available coherence resource, and allow the request to be
processed in response to the determination that the request
does not deplete the available coherence resource.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is useful
in simulations, the hardware may be represented using a
hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present inven-
tion.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be
executed by the micro-controller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

US 9,189,296 B2

11

Use of the phrase ‘to” or ‘configured to,” in one embodi-
ment, refers to arranging, putting together, manufacturing,
offering to sell, importing and/or designing an apparatus,
hardware, logic, or element to perform a designated or deter-
mined task. In this example, an apparatus or element thereof
that is not operating is still ‘configured to’ perform a desig-
nated task if it is designed, coupled, and/or interconnected to
perform said designated task. As a purely illustrative
example, a logic gate may provide a 0 ora 1 during operation.
But a logic gate ‘configured to’ provide an enable signal to a
clock does not include every potential logic gate that may
providea 1 or 0. Instead, the logic gate is one coupled in some
manner that during operation the 1 or 0 output is to enable the
clock. Note once again that use of the term ‘configured to’
does notrequire operation, but instead focus on the latent state
of an apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element is designed to
perform a particular task when the apparatus, hardware, and/
or element is operating.

Furthermore, use of the phrases ‘capable of/to,” and or
‘operable to,” in one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
of'a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values is
also referred to as 1’s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
Orefers to alow logic level. In one embodiment, a storage cell,
such as a transistor or flash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations of values in computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 1010 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held in a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes a
low logical value, i.e. set. Note that any combination of values
may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via instruc-
tions or code stored on a machine-accessible, machine read-
able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)

40

45

50

55

65

12

signals (e.g., carrier waves, infrared signals, digital signals);
etc., which are to be distinguished from the non-transitory
mediums that may receive information there from.

Instructions used to program logic to perform embodi-
ments of the invention may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer). LOL

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What is claimed is:
1. A caching agent for reducing deadlock in a processor,
comprising:
a receiver to receive a request from a core of the processor
to an input/output (1/0) device that will generate an 1/0
cache request;
ingress logic coupled to the receiver to:
determine that the request is potentially a cacheable
request based on a detected state of the core indicated
by the request;
determine that the request does not deplete an available
coherence resource; and
allow the request to be processed in response to the
determination that the request does not deplete the
available coherence resource.
2. The caching agent of claim 1, the ingress logic to detect
that the request is a memory-mapped input/output (MMIO)
request.

US 9,189,296 B2

13

3. The caching agent of claim 1, wherein the state com-
prises an administrative mode, further comprising a system
address decoder (SAD) to detect that the request was made in
the administrative mode.

4. The caching agent of claim 3, the SAD to detect that the 3

request was made in system management mode (SMM).

5. The caching agent of claim 1, wherein the coherence
resource is a table of requests (TOR) entry.

6. The caching agent of claim 1, wherein the coherence
resource is a last level cache (LLC) way.

7. The caching agent of claim 1, comprising a table of
requests (TOR) pipeline, wherein the processed request is to
be allocated into the TOR pipeline.

8. A method for reducing deadlock in a processor, com-
prising:

receiving a request from a core of the processor to an

input/output (1/0) device that will generate an I/O cache
request;

determining that the request is potentially a cacheable

request based on a detected state of the core indicated by
the request;

determining that the request does not deplete an available

coherence resource; and

allowing the request to be processed in response to the

determination that the request does not deplete the avail-
able coherence resource.

9. The method of claim 8, comprising detecting that the
request is a memory-mapped input/output (MMIO) request.

10. The method of claim 8, wherein the state comprises an
administrative mode, further comprising detecting that the
request was made in the administrative mode.

11. The method of claim 10, comprising detecting that the
request was made in system management mode (SMM).

12. The method of claim 8, wherein the coherence resource
is a table of requests (TOR) entry.

13. The method of claim 8, wherein the coherence resource
is a last level cache (LLC) way.

14. A processor for reducing deadlock, comprising:

a core;

a caching agent communicatively coupled to the core, the

caching agent comprising:

an ingress port including code, when executed, to cause
the ingress port to:

receive a request from a core of the processor to an
input/output (I/O) device that will generate an /O
cache request;

determine that the request is potentially a cacheable
request based on a detected state of the core indicated
by the request;

10

15

20

25

30

35

40

45

14

determine that the request does not deplete an available
coherence resource; and

allow the request to be processed in response to the
determination that the request does not deplete the
available coherence resource.

15. The processor of claim 14, the ingress port to detect that
the request is a memory-mapped input/output (MMIO)
request.

16. The processor of claim 14, wherein the state comprises
an administrative mode, the caching agent comprising a sys-
tem address decoder (SAD) to detect that the request was
made in the administrative mode.

17. The processor of claim 16, the SAD to detect that the
request was made in system management mode (SMM).

18. The processor of claim 14, wherein the coherence
resource is a table of requests (TOR) entry.

19. The processor of claim 14, wherein the coherence
resource is a last level cache (LLC) way.

20. The processor of claim 14, the caching agent compris-
ing a table of requests (TOR) pipeline, wherein the processed
request is to be allocated into the TOR pipeline.

21. A non-transitory computer readable medium including
code, when executed, to cause a processor to perform opera-
tions, the operations, comprising:

receiving a request from a core of the processor to an

input/output (/O) device that will trigger an I/O cache
request;

determining that the request is potentially a cacheable

request based on a detected state of the core indicated by
the request;

determining that the request does not deplete an available

coherence resource; and

allowing the request to be processed in response to the

determination that the request does not deplete the avail -
able coherence resource.

22. The non-transitory computer readable medium of claim
21, the operations comprising detecting that the request is a
memory-mapped input/output (MMIO) request.

23. The non-transitory computer readable medium of claim
21, wherein the state comprises an administrative mode, the
operations further comprising detecting that the request was
made in an administrative mode including in system manage-
ment mode (SMM).

24. The non-transitory computer readable medium of claim
21, wherein the coherence resource is a table of requests
(TOR) entry.

25. The non-transitory computer readable medium of claim
21, wherein the coherence resource is a last level cache (LLC)
way.

